Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source.

نویسندگان

  • Karin Denger
  • Jürgen Ruff
  • David Schleheck
  • Alasdair M Cook
چکیده

The Gram-positive bacteria Rhodococcus opacus ISO-5 and Rhodococcus sp. RHA1 utilized taurine (2-aminoethanesulfonate) as the sole source of carbon or of nitrogen or of sulfur for growth. Different gene clusters and enzymes were active under these different metabolic situations. Under carbon- or nitrogen-limited conditions three enzymes were induced, though to different levels: taurine-pyruvate aminotransferase (Tpa), alanine dehydrogenase (Ald) and sulfoacetaldehyde acetyltransferase (Xsc). The specific activities of these enzymes in R. opacus ISO-5 were sufficient to explain the growth rates under the different conditions. These three enzymes were purified and characterized, and the nature of each reaction was confirmed. Analyses of the genome of Rhodococcus sp. RHA1 revealed a gene cluster, tauR-ald-tpa, putatively encoding regulation and oxidation of taurine, located 20 kbp from the xsc gene and separate from two candidate phosphotransacetylase (pta) genes, as well as many candidate ABC transporters (tauBC). PCR primers allowed the amplification and sequencing of the tauR-ald-tpa gene cluster and the xsc gene in R. opacus ISO-5. The N-terminal sequences of the three tested proteins matched the derived amino acid sequences of the corresponding genes. The sequences of the four genes found in each Rhodococcus strain shared high degrees of identity (>95 % identical positions). RT-PCR studies proved transcription of the xsc gene when taurine was the source of carbon or of nitrogen. Under sulfur-limited conditions no xsc mRNA was generated and no Xsc was detected. Taurine dioxygenase (TauD), the enzyme catalysing the anticipated desulfonative reaction when taurine sulfur is assimilated, was presumed to be present because oxygen-dependent taurine disappearance was demonstrated with taurine-grown cells only. A putative tauD gene (with three other candidates) was detected in strain ISO-5. Regulation of the different forms of metabolism of taurine remains to be elucidated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine.

Selective enrichments yielded bacterial cultures able to utilize the osmolyte N-methyltaurine as sole source of carbon and energy or as sole source of fixed nitrogen for aerobic growth. Strain MT1, which degraded N-methyltaurine as a sole source of carbon concomitantly with growth, was identified as a strain of Alcaligenes faecalis. Stoichiometric amounts of methylamine, whose identity was conf...

متن کامل

Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.

Taurine metabolism by two phototrophically grown purple nonsulfur bacteria enrichment isolates has been examined. Rhodopseudomonas palustris (strain Tau1) grows with taurine as a sole electron donor, sulfur and nitrogen source during photoautotrophic growth. Rhodobacter sphaeroides (strain Tau3) grows on the compound as sole electron donor, sulfur and nitrogen source, and partial carbon source,...

متن کامل

Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.

A degradative pathway for taurine (2-aminoethanesulfonate) in Rhodobacter sphaeroides 2.4.1 was proposed by Brüggemann et al. (2004) (Microbiology 150, 805-816) on the basis of a partial genome sequence. In the present study, R. sphaeroides 2.4.1 was found to grow exponentially with taurine as the sole source of carbon and energy for growth. When taurine was the sole source of nitrogen in succi...

متن کامل

Engineering of a xylose metabolic pathway in Rhodococcus strains.

The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid ac...

متن کامل

Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R.

Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 150 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2004